Emotion recognition from children's speech using anchor models
نویسندگان
چکیده
In this paper we have adopted anchor models to solve a multi-class problem of automatic emotion recognition from children's speech. The likelihood scores of an utterance over the emotion models are normalized using their within-class covariance matrix (WCCN) in order to increase the difference in the characteristic behavior of scores between classes. After normalization, we find that WCCN not only increases performance but also produces similar performances for cosine and Euclidean metrics. We also show that, in contrast to speaker diarization and verification problems, the performance of anchor model exceeds GMM’s performance by a relative gain of 6.2%. Finally, anchor model improves the state-of-the art by 2.6% relative.
منابع مشابه
Anchor Model Fusion for Emotion Recognition in Speech
In this work, a novel method for system fusion in emotion recognition for speech is presented. The proposed approach, namely Anchor Model Fusion (AMF), exploits the characteristic behaviour of the scores of a speech utterance among different emotion models, by a mapping to a back-end anchor-model feature space followed by a SVM classifier. Experiments are presented in three different databases:...
متن کاملA Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation
Abstract Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...
متن کاملClassification of emotional speech using spectral pattern features
Speech Emotion Recognition (SER) is a new and challenging research area with a wide range of applications in man-machine interactions. The aim of a SER system is to recognize human emotion by analyzing the acoustics of speech sound. In this study, we propose Spectral Pattern features (SPs) and Harmonic Energy features (HEs) for emotion recognition. These features extracted from the spectrogram ...
متن کاملSpeech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions
Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC) in a speech emotion recognition system. We investigate its perfor...
متن کاملSpeech Emotion Recognition Using Scalogram Based Deep Structure
Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012